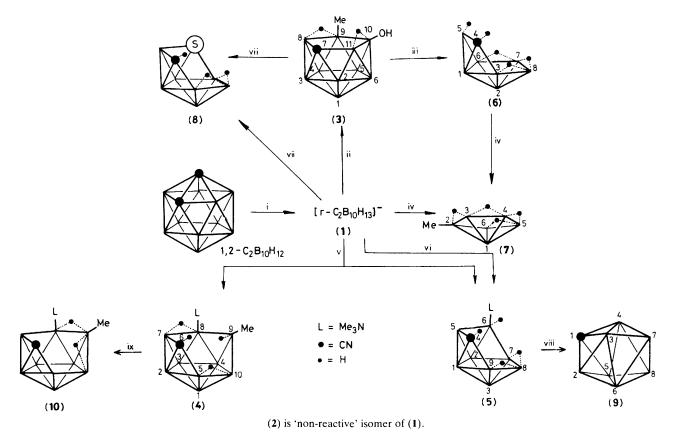
New Monocarbaboranes from Stepwise Degradation of Icosahedral 1,2- and $1,7-C_2B_{10}H_{12}$ Dicarbaboranes


Jaromír Plešek, Tomáš Jelínek, Bohumil Štíbr, and Stanislav Heřmánek

Institute of Inorganic Chemistry, Czechoslovak Academy of Sciences, 250 68 Řež near Prague, Czechoslovakia

Specific degradation reactions of the 'reactive isomer' of the $[C_2B_{10}H_{13}]^-$ anion, $[r-C_2B_{10}H_{13}]^-$, result in the removal of one or two carbon atoms from the cage to produce a series of monocarbaboranes 9-Me-10-HO-*nido*-[7-CB₁₀H₁₁]⁻, 8-Me₃N-*arachno*-4-CB₈H₁₂, and *arachno*-4-CB₇H₁₃, together with the binary borane 2-Me-*nido*-B₆H₉; further reactions give the compounds 8-Me₃N-9-Me-*nido*-6-CB₉H₁₀, *arachno*-4,6-CSB₇H₁₁, and *closo*-[1-CB₇H₈]⁻.

Both 1,2- and 1,7-C₂B₁₀H₁₂ dicarbaboranes are known to afford quantitatively the $[C_2B_{10}H_{12}]^{2-}$ dianion *via* reduction with sodium metal in tetrahydrofuran (thf).¹⁻³ Dunks *et al.*^{4.5} have reported that protonation of the latter anion produces the 'reactive isomer' of $[C_2B_{10}H_{13}]^-$, $[r-C_2B_{10}H_{13}]^-$ (1), and the 'non-reactive isomer,' $[nr-C_2B_{10}H_{13}]^-$ (2), under different conditions. The $[r-C_2B_{10}H_{13}]^-$ (2), under different conditions. The $[r-C_2B_{10}H_{13}]^-$ isomer rearranges by heating at 100 °C to the isomer (2). While the structure of (1) still remains unclear, the μ -9,10-CH₂-*nido*-[7-CB₁₀H₁₁]⁻ structure of (2) has been determined unequivocally *via* X-ray diffraction studies on its C, C'-dimethyl and C, C'-diphenyl derivatives.^{6.7} We now report another aspect of the formation of (1) and, particularly, our preliminary results on directed degradation reactions of (1) leading to an unexpected, stepwise degradation of the original *closo*-C₂B₁₀H₁₂ cage to smaller monocarbaborane and borane frameworks.

An aqueous-thf solution of crude (1) was obtained on the reduction of 1,2- and/or 1,7- $C_2B_{10}H_{12}$ with sodium metal in thf catalysed by naphthalene (5%).¹⁻⁻³ followed by treatment with a mixture of 1 M HCl (1.2 mol. equiv.) and NaCl (10%). The solution obtained after the separation of the organic layer contained typically 75% of (1), and 25% of (2), which does not interfere in further syntheses. This solution is stable for several hours at 25 °C unless the thf is removed. If the thf is evaporated *in vacuo* (25 °C, pH 5), a turbid, very unstable, solution of (1) is obtained for further rapid reaction. If the solution is made slightly alkaline before the thf is removed, the resulting aqueous solution contains only an anion formulated as $[C_2B_{10}H_{14}OH]^-$ (3) contaminated by 25% of (2) already present from the synthesis. The anion (3) (characterized with NBun₄⁺ or PPh₄⁺ as counterion) is thought to be 9-Me-10-HO-*nido*-[7-CB₁₀H₁₁]⁻, although unambiguous structural

Scheme 1. Stepwise degradation of $1,2-C_2B_{10}H_{12}$ to smaller monocarbaborane and borane cages. Dotted lines denote positions of extra hydrogens and the vertices of individual deltahedra represent {BH} cluster units. *Reagents*: i, Na, thf, then dil. HCl; ii, K₂CO₃, 20 °C, 5 min (75%); iii, dil. HCl, pentane, 20 °C, 30 min (70%); iv, dil. HCl, pentane, 20 °C, 4 h (65%); v, Me₃N, H₂O-thf, 20 °C, 6 h [25% of (4) and 60% of (5)]; vi, Me₃N, H₂O-CHCl₃ (>90%); vii, KHSO₃, H₂O, 20 °C, 10 h (34%); viii, NaH, thf, 60 °C, 6 h (>60%); ix, Me₂CO, K₂CO₃, 20 °C, 1 h (>95%).

assignment by two-dimensional ¹¹B-¹¹B COSY n.m.r. techniques was not possible because of accidental near-coincidence of several ¹¹B n.m.r. resonances in the one-dimensional spectrum. \dagger The formation of (3) is consistent with the removal of one of the skeletal carbons to an exo-polyhedral position. Further reactions leading to profound cage degradations of (1) and (3) are depicted in Scheme 1. Anion (1) and aqueous trimethylamine produce in the presence of thf a mixture of the arachno monocarbaboranes 8-Me₃N-9-Me-6- CB_9H_{12} (4) and 6-Me₃N-4-CB₈H₁₂ (5) which can be separated via column chromatography on silica gel in chloroform. In the presence of chloroform, only compound (5) is obtained in high yield. Acid hydrolysis of both (1) and (3) with dilute hydrochloric acid (20 °C, 30 min) results in the formation of the arachno-4-CB₇ H_{13} (6) carbaborane, which upon hydrolysis (25 °C, 4 h) generates the earlier reported⁸ nido-hexaborane 2-MeB₆H₉ (7), as the final member of the degradation chain. The borane (7) is also formed on prolonged hydrolysis of both (1) and (3). Acid degradation of (3) with the sulphite

¹³C n.m.r. spectra (tentative assignments, δ with respect to Me₄Si, relative intensities in parentheses): (5)^a 6-Me₃N +54.22 (3), C(4) -12.42 (1); (6)^b C(4) -12.01; (7)^b 2-Me 0.00.

¹¹B n.m.r. spectra [tentative assignments by ¹¹B-¹¹B COSY experiments, δ (¹¹B)/p.p.m., with respect to Et₂O.BF₃, relative intensities in parentheses]: (1)^a BH +12.01, BH 2.31 (2), BH -5.01 (1), BH - 8.14 (2), BH - 17.84 (1), BH - 20.31 (1), BH - 21.65 (2); (3)^a B(10) +8.37 (1), BH 6.39 (1), B(8) -0.83 (1), BH -3.04 (2), BH -7.49(1), BH -26.99(1), BH -35.98(3); (4)^a BH(4) +4.74, BH(9) -5.15, BH(5,7) -9.32, BH(2) -12.68, B(8) -15.64, BH(10) -23.35, BH(3) -35.04, BH(1) -40.67; (5)^a BH(5) +0.39, BH(9) +0.53, BH(7) -4.78, BH(2) -12.19, BH(6) -18.93, BH(1) -22.15, BH(8) -25.9, BH(3) -52.71; (6)^b BH(7) +8.61, BH(6) +3.65, BH(3) -0.26, BH(1) -5.70, BH(8) -6.53, BH₂(5) -14.68, BH(2) -55.22; $(7)^{b}$ B(2) +29.36, BH(4,5) +17.26, BH(3,6) +5.77, BH(1) -50.53; $(8)^{b}$ BH(7,9) +1.41, BH(1) -0.55, BH(2) -14.75, BH(5) -27.16, BH(8) -33.09, BH(3) -50.07; (9)^a BH(6,7,8) +3.14, BH(2,3,4,5) -4.35 (fluxional behaviour between -40 and +25 °C); (10)^a B(9) +7.94, BH(5) +5.16, BH(7) +0.79, B(8) -4.48, BH(1,3) -5.93, BH(10) -15.02, BH(2,4) -32.82.

ion affords the earlier reported⁹ thiacarbaborane *arachno* $4,6=CSB_7H_{11}$ (8) which has been synthesised directly from (1).⁹

Treatment of (5) with NaH in thf results in the unexpected elimination of Me₃NBH₃ to give the new parent anion *closo*-[1-CB₇H₈]⁻ (9). Of interest also is the oxidation of the *arachno*-compound (4) with acetone to give its *nido*-congener, 8-Me₃N-9-Me-6-CB₉H₁₀ (10).

Gross geometries of compounds (4)—(10) are proposed on the basis of unambiguous n.m.r. data, ${}^{11}B-{}^{11}B$ COSY and mass spectral measurements.† The *arachno*-monocarbaborane (6) is the first known carba-analogue of an open cage octaborane and anion (9) is the first known 8-vertex *closo*monocarbaborane. Compound (5) is isoelectronic and isostructural with the long known 4,6-C₂B₇H₁₃ dicarbaborane,^{10,11} and compounds (4) and (10) represent hitherto unknown types of carbadecaboranes with a ligand attached asymmetrically at the B(8) site. The unique base-catalysed oxidation of (4) to (10) seems to be of general significance in the 10-vertex series of monocarbaboranes.

The most characteristic feature of the degradation reactions described above is the removal of one or two carbon atoms from the cage. In this respect these reactions, starting from the readily available 1,2- and $1,7-C_2B_{10}H_{12}$ dicarbaboranes, now open new synthetic possibilities in the chemistry of mono-carbaboranes.

We thank Drs. I. Koruna and M. Ryska of the Research Institute for Pharmacy and Biochemistry, Prague, for the mass spectral measurements and Dr. M. Bown of the University of Leeds for helpful discussions.

Received, 9th November 1987; Com. 1631

References

- 1 L. I. Zakharkin and L. S. Podvisotskaya, *Izv. Akad. Nauk SSSR*, Ser. Khim., 1966, 1495.
- 2 L. I. Zakharkin and V. N. Kalinin, *Izv. Akad. Nauk SSSR, Ser. Khim.*, 1969, 164.
- 3 V. Stanko, Yu. V. Gol'tyapin, and V. Brattsev, Zh. Obshch. Khim., 1969, 39, 1175.
- 4 G. B. Dunks, R. J. Wiersema, and M. F. Hawthorne, J. Chem. Soc., Chem. Commun., 1972, 899.
- 5 G. B. Dunks, R. J. Wiersema, and M. F. Hawthorne, J. Am. Chem. Soc., 1973, 95, 3174.
- 6 M. R. Churchill and B. G. de Boer, Inorg. Chem., 1973, 12, 2674.
- 7 E. I. Tolpin and W. N. Lipscomb, Inorg. Chem., 1973, 12, 2257.
- 8 V. T. Brice, H. D. Johnson II, and S. G. Shore, J. Chem. Soc., Chem. Commun., 1972, 1128.
- 9 J. Plešek, S. Heřmánek, and Z. Janoušek, Collect. Czech. Chem. Commun., 1977, 42, 785.
- 10 F. N. Tebbe, P. M. Garrett, and M. F. Hawthorne, J. Am. Chem. Soc., 1966, 88, 607.
- 11 F. N. Tebbe, P. M. Garrett, and M. F. Hawthorne, J. Am. Chem. Soc., 1968, 90, 869.

[†] Mass spectra: m/z (M^+): (4) 197; (5) 171; (6) 102; (7) 90; (8) 132; (10) 195 (parent ions).

N.m.r. data: ^a in (CD₃)₂CO, ^b in CDCl₃: ¹H (tentative assignments, δ with respect to Me₄Si, relative intensities in parentheses): (1)^a (NMe₄⁺ salt) CH(skeletal) +4.14 (2), NMe₄⁺ +3.42 (12), μ -H -4.60 (1); (3)^a (PPh₄⁺ salt) Ph +7.88 (20), exo-Me +0.3 (3), μ -H -3.03 (2); (4)^b 8-Me₃N +2.99 (9), 9-Me +0.34 (3), exo-H(6) +0.06 (1), μ -H -1.75 (1), endo-H(6) -1.93 (1), μ -H -3.40 (1); (5)^a 6-Me₃N +2.88 (9), exo-H(6) -0.16(1), endo-H(6) -1.09 (1), μ -H -2.42 (2); (6)^b exo and endo-H(4) +0.90 (2), μ -H -0.79 (3); (7)^b 2-Me +0.64 (3), μ -H -1.96 (4); (8)^b exo-H(4) +0.19 (1), endo-H(4) -0.32 (1), μ -H -0.92 (1), μ -H -2.45 (1); (9)^a (NMe₄⁺ salt) H(1) +4.14 (1), NMe₄⁺ +3.46 (12); (10)^a H(6) +5.62 (1), 8-Me₃N +3.21 (9), 9-Me +0.80 (3), μ -H -0.65 (1), μ -H -3.09 (1).